! Unclassified -
SECURITY CLASSIFICATION OF THIS PAGE.

. REPORT DOCUMENTAYION PAGE
[7a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
IMmMrlacad £~
858 3. DISTRIBUTION/ AVAILABILITY OF REPORT
AP |\\|&I\\|\I\|\\I\l|\\\|I\
| \\“\l\\\““‘“l‘l S) S. MONITORING ORGANIZATION REPORT ~um®
Technical Report Q/ 0?
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 72. NAME OF MONITORING ORGANIZATIO

: in
Cornell University (If applicable) Office of Naval Research Q 3/ () :
6¢c. ADDRESS (City, State, and ZIP Code) ’ 7b. ADDRESS (City, State, and ZIP Code)

Department of Computer Science

800 N. Quincy Street

Upson Hall
Ithaca, NY 14853-7501 Arlington, VA 22217—5000
8a. g:gfu?z; ;l.gl:lNG/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NU
! (if applicable)
Office of Naval Research NO0014-91-J-1219
8¢c. ADDRESS (City, State, and 2IP Code) 10. SOURCE OF FUNDING NUMBERS
800 N. Quincy Street PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22217-5000 ELEMENT NO. NO. NO. ACCESSION NC

11. TITLE (Include Security Classification)
A Determinizable Class of Timed Automata

12. PERSONAL AUTHOR(S)
Rajeev Alur, Limor Fix, Thomas A. Henzinger

13a. TYPE OF REPORT 13b. TTME COVERED 14. DATE OF REPORT (Yeasr, Month, Day) [1S. PAGE COUNT
Interim FROM T0
A e S

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

real-time systems, formal specification, timing
verification

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

We introduce the class of event-recording timed antomats (ERA). An event-
recording automaton contains, for every event a, a clock that records the time
of the last occurrence of a. The class ERA is, on one hand, expressive enough to
model (finite) timed transition systems and, on the other hand, determinisable
and closed under all boolean operations. As a result, the language inclusion
problem is decidable for event-recording automata. We present a translation
from timed transition systems to event-recording automatas, which leads to an
algorithm for checking if two timed transition systems have the same set of
timed behaviors.

We also consider event-predicting timed astomats (EPA), which contain
clocks that predict the time of the next occurence of an event. The class of
event-clock auviomata (ECA), which contain both event-recording and event-
predicting clocks, is a suitable specification language for real-time properties.
We provide an algorithm for checking if a timed automaton meets a specification
that is given as an event-clock automaton.

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIEOAUNUMITED (O same as RPT. [(JoTIC USERS
228, NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22c. OFFICE SYMBOL

e
0D FORM 1473, 84 MAR 83 APR edition may be used until exhausted.

SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

A Determinizable Class of Timed Automata

Rajeev Alur! Limor Fix?* Thomas A. Henzinger? **

VATET Bell Laboratories, Murray Hill, NJ

* Department of Computer Science, Cornell University, [thaca, NY

Accesion For

(ERA). An evenl-recording automalon containg, lor every evenl a, a DT
clock that records Lhe time of Lthe lasl occurrence of a. ‘I'he class ERA s, ic TAB

Abstract. We introduce the class of evenl-recording limed awlomala NTIS GRAZS g

on ane hand, expressive enongh Lo model (linite) timed transition sys- Unannomced

lems and, on Lthe olher hand, determinizable and closed under all boolean Justiﬁcation

operations. As a resull, the language inclusion problem is decidable for [——————rl] e —— T -
eventl-recording automata. We presenl a transtation from Limed Lransi- By

tion systems Lo event-recording anlomala, which leads Lo an algorithm DlSi ibuti
for checking il two timed transition systems have Lhe same sel ol timed ! Uthn[

behaviors. Availability Codes

We also consider evend-predicting limed antomale (EPA), which contain

clocks Lhat predict the time of Lhe next occurrence of an event. The class | Dist Avail and/or
ol event-clock automale (ECA), which contain both event-recording and Special
evenl-predicling clocks, is a suitable specification language for real-time

properiies. We provide an algorithm for checking i a Limed antomaton -/
meels a specilication thal is given ax an eveal-clock automalon.

1 Introduction

Finite automata are instrumental for the modeling and analysis of many phenom-
cna within computer science. In particular, automata theory plays an important
role in the verification of concurrent finite-state systems {10, 16]. In the trace
modcl for concurrent computation, a system is identified with its behaviors. As-
suming that a behavior is represented as a sequence of states or events, the
possible behaviors of a system can be viewed as a formal language, and the sys-
tem can be modcled as an automaton that generates the language (a complex
system is modcled as the product of antomata that represent the component
systems). Sinee the admissible behaviors of the system also constitute a formal
language, the requirements specification can be given by another automaton
(the adequacy of antomata as a specification formalism is justified by the fact
that competing formalisms such as lincar temporal logic arc no more expres-
sive). The verification problem of checking that a system mects its specification,

* Supported in part by the Office of Naval Research under conlract N00014-91-3-1219,
the National Science Foundation under grant CCR-8701103, and by DARPA/NSF

nnder grant. CCR-9014363.
* Supported in parl by the National Science Foundation under grant CCR-9200794

and by Lhe United States Air Force Office of Scientilic Research under contract
F-196G20-93-1-0056

13436 |
\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\ 1 o0 94 5 04 033

then, reduees to testing language inclusion between two antomata. The decision
procedure for language inelusion typically involves the complementation of the
specification antomaton, which in turn relies upon determinization 9, 15).

To capture the behavior of a real-time system, the model of computation
nceds to be angmented with a notion of time. For this purpose, timed an-
tomata [3] provide a simple, and yet powerful, way of annotating state-transition
graphs with timing constraints, using finitcly many real-valued variables called
clocks. A timed antomaton, then, aceepts timed words strings in which cach
symbol is paired with a real-valued time-stamp. While the theory of timed au-
tomata. allows the antomatic verification of certain real-time requirements of
finite-state systems (1, 3, 4, 8], and the solution of certain delay problems (2,
6], the general verification problem (i.c., language inclusion) is undecidable for
timed automata [3]). This is beeause, unlike in the untimed case, the nonde-
terministic varicty of timed antomata is strictly more expressive than the de-
terministic variety. The notion of nondeterminism allowed by timed automata,
therefore, secems too permissive, and we hesitate to accept timed antomata as
the canonical modedl for fiite-state real-time computation [5].

In this paper, we obtain a determinizable class of timed antomata by re-
stricting the usc of clocks. The clocks of an ewent-clock antomaton have a fixed,
predefined association with the symbols of the input alphabet (the alphabet sym-
hols typically represent events). The event-recording clock of the input symbol a
is a. history variable whose value always equals the time of the last oceaurrence of
a rclative to the enrrent time; the event-predicting clock of a is a prophecy vari-
able whose value always equals the time of the next occurrence of a relative to
the current time (if no such occurrence exists, then the clock value is undefined).
Thus, unlike a timed automaton, an event-clock antomaton does not control the
reassignments of its clocks and, at cach input symbol, all elock values of the
antomaton arc determined solely by the input word. This property allows the
determinization of event-clock antomata, which, in turn, leads to a complemen-
tation procedure. Indeed, the class ECA of event-clock automata is closed under
all boolean operations (timed antomata. are not closed under complement), and
the language inclusion problem is decidable for event-clock automata.

While event-predicting clocks are nseful for the specification of timing re-
quircments, automata. that contain only cvent-recording clocks (event-recording
automata) arc a suitable abstract model for real-time systems. We confirm this
claim by proving that event-recording automata are as powerful as another popu-
lar model for real-time computation, timed transition systems [7]. A timed tran-
sition system associates with cach transition a lower bound and an upper bound
on the time that the transition may be enabled without being taken (many
related real-time formalisms also use lower and upper time bounds to express
timing constraints {13, 14]). A run of a timed transition system, then, is again
a timed word a sequence of time-stamped state changes. We construct, for a
given timed transition system T with a finite sct of states, an event-recording
automaton that accepts precisely the runs of T. This result leads to an algorithm
for checking the equivalence of two finite timed transition systems.

2 Event-clock Automata

Timed words and timed languages

We study formal languages of timed words.* A timed word 1% over an alphabet &
is a finite scquence (aa,ta)(ar,t1)...(an, ty) of symbols a; € £ that arc paired
with nonnegative real numbers #; € R such that the sequence # = #1#2 ... ¢, of
time-stamps is nondeercasing (i.c., t; € tiyy for all 0 € ¢ < n). Somctimes we
denote the timed word 13 by the pair (@,1). A timed language over the alphabet £
is a. sct of timed words over . The boolean operations of union, intersection,
and complement of timed languages are defined as usual. Given a timed language
L over the alphabet X, the projociion Untime(L) is obtained by discarding the
time-stamps: Untime(L) C £* consists of all strings @ for which there exists a
sequence f of time-stamps such that (a,7) € L.

Automata with clocks

Timed antomata arc finite-state machines that are constrained with timing re-
quirements so that they accept (or generate) timed words (and thus define timed
languages); they were proposed in [3] as an abstract modecl for finite-state real-
time systems. A timed automaton operates with finite control a finite sot of
locations and a. finite set of real-valued variables called clocks. Each edge between
locations specifics a set of clocks to be reset (i.c., restarted). The value of a clock
always records the amount of time that has clapsed since the last time the clock
was reset: if the clock z is resct while reading the i-th symbol of a timed input
word (@,), then the value of z while reading the j-th symbol, for j > 4, is t; —#;
(nssuming that the clock z is not resct at any position between ¢ and 7). The
edges of the antomaton put certain arithmetic constraints on the clock values;
that is, the automaton control may procoed along an edge only when the values
of the clocks satisfy the corresponding constraints.

Each clock of a timed automaton, thercfore, is a real-valued variable that
records the time difference betwoen the current input symbol and another in-
put symbol, namely, the input symbol on which the clock was last reset. This
association between clocks and input symbols is determined dynamically by the
behavior of the automaton. An cvent-clock automaton, by contrast, employs
clocks that have a tight, predefined, association with certain symbols of the
input. word. Suppesc that we modcl a real-time system so that the alphabet
symbols represent. events of the system. In most cases, it will suffice to know, for
cach event, the time that has clapsed since the last occurrence of the cvent. For
example, to model a delay of 1 to 2 seconds between the input and output events
of a device, it suffices to use a clock z that records the time that has clapsed
since the last input event, and require the constraint 1 < z < 2 when the output
cvent. occurs. This observation leads us to the definition of clocks that have a
fixed association with input symbols and cannot be resct arbitrarily.

 For the clarily of exposilion, we limit ourselves Lo finite words, Our resulls can be
exlended Lo Lhe framework of w-languages.

Event-recording and event-predicting clocks

Let X be a finite alphabet. For every symbol a € Z, we write 7, to denote the
event-recording clock of a. Given a timed word % = (ag,20)(a1,11). .. (An,tn),
the value of the clock 4 at the j-th position of 7 is 1; — ¢;, where 1 is the largest
position preceding j such that a; equals a. If no occurrenee of a precedes the
J-th position of 1, then the value of the clock 7, is “undefined,” denoted by L.
We write RT = R* U {1} for the sct of nonncgative real numbers together with
the special value L. Formally, we define for all0 < j < n,

t; —t; if there oxists ¢ such that 0 <i < janda; =«
val(, j)7a) = and for all k with i < k < j, ar # a,
L ifar #aforallk with0 <k < ;.

That is, the event-recording clock x, behaves exactly like an automaton clock
that is resct every time the automaton cncounters the input symbol a. The
value of x,, thereforc, is determined by the input word, not by the automaton.
Auxiliary variables that record the times of last occurrences of events have haen
used extensively in real-time reasoning, for example, in the context of model-
checking for timed Petri nets [17], and in asscrtional proof methods [11, 14].

Event-recording clocks provide timing information abeut events in the past.
The dual notion of cvent-predicting clocks provides timing information about
future events. For cvery symbol a € T, we write 3, to denote the coent-predicting
clock of a. At cach position of the timed word @, the value of the clock y,
indicates the time of the next occurrence of a relative to the time of the current
input symbol; the special value L indicates the absence of a future oceurrence
of a. Formally, we define for all0 € j <,

t; — t; if there exists @ such that j < <nanda; =«
val(,) ya) = and for all k with j < k <1, ag #a,
L ifar #aforallk with j <k < n.

The event-predicting clock y, can be viewed as an antomaton clock that is reset,
every time the automaton encounters the input symbol a, to a nondcterministic
negative starting value, and checked for 0 at the subsequent occurrence of a.
We write Cy for the set {ra,9. | @ € T} of event-recording and cvent-
predicting clocks. For. each position j of a timed word 1, the clock-valuwation
function wal(s%, j), then, is a mapping from Cg to RY. The clock constraints
compare clock values to rational constants or to the special value L. Let Q)
denote the set of nonnegative rational numbers together with L. Formally, a. clock:
constraint over the sct C of clocks is a boolcan combination of atomic formulas of
theform z < cand z 2 ¢, where 2 € C and ¢ € Q. The clock constraints over C
arc interpreted with respect to clock-valuation functions from C to RY: the atom
L=1 evaluates to true, and all other comparisons that involve L (c.g., L> 3)
cevaluate to false. For a clock-valuation function 4 and a clock constraint &, we
write v = & to denote that according to v the constraint ¢ evaluates to true.

Syntax and semantics of event-clock automata

An cvent-clock automaton is a (nondeterministic) finite-state machine whose
cdges are annotated both with input symbols and with .ock constraints over
cvent-recording and event-predicting clocks. Formally, a. cvent-clock automaton
A consists of a finite input alphabet £, a finite set L of locations, a.set Lo C L
of start locations, a set. Ly C L of accepting locations, and a. finite set E of
cdges. Each edge is a quadruple (€, #, a, ¢) with a source location € € L, a target
location ¢ € L, an input symbola € T, and a clock constraint @ over the
clocks Cg.

Now lct us consider the behavior of an cvent-clock antomaton over the timed
input word @ = (aq,ta)(ar,#1)...(an,2a). Starting in onc of the start locations
and scanning the first input pair (ag,ta), the automaton scans the input word
from left to right, consuming, at cach step, an input symbol together with its
time-stamp. In location £ scanning the i-th input pair (a;, #;), the automaton may
proceed to location € and the 7 + 1-st input pair iff there is an edge (€, €, a,)
sveh that a eqnals the current input symbol a; and val(ir, 1) satisfies the clock
constraint ¢. Formally, a. computation of the event-clock antomaton A over the
timed input word % is a finite sequence

fo =5 b 25 6y L e {'vli’-:n+!

of locations #; € L and edges ¢; = (€, €41, i, 0i) € E such that £, € Lo and
for all 0 <1 < n, 2al(sF,1) = ¢;; the computation is aceepting if £,4, € Ly. The
timed language £(A) defined by the event-clock antomaton A, then, consists of
all timed words 1% such that A has an accepting computation over 1. We write
ECA for the class of timed languages that are definable by event-clock automata.

The event-clock antomaton A is an ewvent-recording antomaton if all clock
comstraints of A contain only cvent-recording clocks; A is an cvent-predicting
antomaton if the elock constraints of A contain only event-predicting clocks.
The class of timed languages that can be defined by these two restricted types
of event-clack antomata. arc denoted ERA and EPA, respectively.

Examples of event-clock automata

The event-clock antomaton Ay of Figire 2 uses two avent-recording clocks, =,
and z3. The location €, is the start location of Ay, and also the sole accepting
location. The clock constraint z, < 1 that is associated with the edge from
f4 to €3 ensures that ¢ occurs within 1 time unit of the preceding a. A similar
mechanism of checking the value of x, while reading d ensurcs that the time
difference between ¢ and the subsequent d is always greater than 2. Thus, the
timed language L£{A;) defined by Ay consists of all timed words of the form
({ahed)™, ¥} such that m > 0 andfor all0 < j < m, tyjpz2 <tyj+1and tj45 >
t1j+1 + 2. Note that the timed language £{Ay) can also be defined using event-
predicting clocks: require y. < 1 while reading a, and y4 > 2 while reading b.
The duality of the two types of clocks is further illustrated by the automata
of Figure 2. The event-recording automaton Az aceepts all timed words of the

Fig. 1. tvent-recording antomaton A,

b a

Fig. 2. bvent-recording antomaton Ay and event-predicling antomaton Ay

form (ab*h,T) such that the time difference between the two extreme symbolsis 1,
which is enforeed by the event-recording clock z,. It is casy to check that there
is no event-predicting automaton that defines the timed language £(A2). The
event-predicting antomaton Az, on the other hand, aceepts all timed words of
the form (aa*h, t) such that the time difference between the two extreme symbols
is 1; for this purpose, the event-predicting clock ys is used to predict the time of
the first b There is no event-recording antomaton that defines £(Ay).

3 Deterministic Event-clock Automata

A finite-state machine (with a single start location) is deterninistic iff all input
symbols that labcl edges with the same souree location are pairwise distinet. We
consider for event-clock automata the notion of determinism that was proposed
for timed automata in [3]. The event-clock automaton A = (S, L, Lo, Ly, E)
is deterministic if A has a single start location (i.c., |La] = 1) and any two
odges with the same souree loeation and the same input symbol have mutually
exclusive clock constraints; that is, if (£,€,a,01) € E and (£,€",a,0,) € E then
for all clock-valuation functions 4, if v = éy then ¥ = #2. The determinism
condition cnsures that at cach step during a computation, the choice of the next
cdge is uniquely determined by the current location of the automaton, the input.
word, and the current position of the automaton along the input word. It is
casy to chack that every deterministic event-clock automaton has at most onc
computation over any given timed input word.

Of our examples from the previous sectinn, the cvent-clock automata A,
and A; are deterministic. While the antomaton A, is nondeterministie, it can

be determinized without changing its language, by adding the clock constraint
7o < 1 to the sclf-loop at location ;.

In the theory of finite-state machines, it is well-known that cvery nondeter-
ministic automaton can be determinized; that is, the deterministic and nonde-
terminstic varicties of finite-state machines define the same class of languages
(the regular languages). In the case of timed automata, however, the nondeter-
ministic variety is strietly more expressive than its deterministic counterpart {3].
We now show that the event-clock automata form a determinizable subelass of
the timed antomata.

Theorem1 (Determinization). For euery event-clock (cvent-recording; cvent-
predicting) automaton A, there is a deterministic cvent-clock (cvent-recording;
cocnt-predicting) automaton that defincs L(A).

Proof. Let A be the given event-clock automaton with the location set L. The
locations of the determinized antomaton Det(A) arc the nonempty subscts of L.
Consider a location L' C L of Det(A), and an input symbola € L. Let E' CE
be the set of all a-labeled edges of A whose sonree locations are in L'. Then, for
cvery nonempty subset E C E', there is an edge from L' to L labeled with the
inpnt. symbol a and the clock constraint ¢ iff L" contains precisely the target
locations of the edges in E”, and ¢ is the conjunction of all elock constraints
of E"-cdges and all negated clock constraints of (E' — E")-edges. It is casy to
cheek that the clock constraints on different a-labeled edges starting from L' are
mutually exclusive. B

Notice that the determinization of an event-clock antomaton causcs an expo-
nential blow-up in the number of locations, but changes neither the number of
clocks nor the constants that occur in clock constraints.

The key for the determinization of cvent-clock automata is the property that.
at cach step during a computation, all clock values are determined solely by
the input word. We therefore obtain derminizable superelasses of event-clock
auntomata. if we add more clocks that do not violate this property. For example,
for cach input symbol a and ecach natural number i, we could employ a clock
z% that records the time since the i-th occurrence of a, and a clock % that
records the time sinee the i-th-to-last occurrence of a (i.c., 7, = #3). Or, more
ambitiously, we may want to use for cach lincar temporal formula ¢ a formaula-
recording clock r, that measures the time sinee the last position of the input
word at which ¢ was true, and a. formula-predicting clock y, that measures the
time until the next position at which ¢ will be true.

4 Properties of Event-Clock Automata

Event-clock automata as labceled transition systems

We now consider an alternative semantices for event-clock automata, using labeled
transition systems. Let A = (Z, L, Lo, Ly, E) be an event-clock automaton. A
atate of A is a pair (£,v) that consists of a location £ € L and a clock-valuation

function ¥ from C'z to RY, which determines the values of all clocks. The state
(£,7) is imatsal if £ € Ly and v{r,) =L for all input symbols a € X; (4, v) is final
if£ € Ly and y(y.) =L for alla € £. We write §,4 for the (infinite) set of states
of the event-clock automaton A and define a lahealed transition relation over Sy
to capture the behavior of A over timed words.

For two states 5,5’ € S4, an input symbola € T, and a real-valued time
delay § € R*, let s54' if the automaton A may proceed from the state s to the
state s' by reading the input symbol a, and let s L if A may proceed from s
to s' by lcrfing time & pass. Formally, (£, 7)=>(#, %'} if there iq a clock-valuation
fnnchon " and an edge (€, #,a,0) € E such that vy = ¥"[y, 1= 0] i.e., v agrees
with ¥” on all clocks £xcept ya, which in ¥ evaluates to 0) Y =9 [= 0],
and v = &; and (¢ 7)—*(1’ Yif € = ¢ and for all input symbols he T,

. if y(xs) =L then v'(x4) =L, clse ¥'(x4) = y(xs) + 6
‘.2. if ¥'(yp) =L then y(ys) =L, clse y(ys) = v'(ys) + 4.
We induectively extend the labeled frrmqifinn rolnfion to timed words: s 205 o1 if
thcro is a state 3"’ E S 4 such fhnf 5384 and s 255! yif = (aq,t0). .. (@n,ta) and
(: 1w (ra"'Hi),,+| then 3 = ' if there is a state s such that s — 5" and
gty The following lemma. shows the correctness of the labeled-
trnnsn.mn-syst.cm semanties for event-clock antomata.

Lemma2. The cvent-clock antomaton A accepis the timed word i 1ff s SN

for some initial state s and some final state 3" of A.

The region construction

The analysis of timed automata builds on the so-called region construction,
which transforms a. timed antomaton into an untimed finite-state machine {1, 3]
Tere we apply the region coustruction to event-clock autemata. We consider
again the given event-clock automaton A and begin with defining the region-
cquivalence relation 2 4 as a finite partition of the infinite state space S 4.

We assume that all elock constraints of A contain only integer constants
(otherwise, all constants need to be multiplied by the least common multiple of
the denominators of all rational numbers that appear in the clock constraints
of A). Let e be the largest integer constant that appears in a clack constraint
of A. Informally, two clock-valuation functions v and v from Cyg to RI are
region-rquivalent, written ¥ &4 ¥/, if ¥ and 4’ agree on which clocks have the
undefined value L, agree on the integral parts of all defined clock values that
arc at most ¢, and agree on the ordering of the fractional parts of all defined
clock values (the fractional part of the event-recording clock r, according to y
18 ¥(7a) = | ¥(24)}}; the fractional part of the event-predicting clock ya is [v(ya)] -
¥(ya)). Two states (£,7),(#,7') € Sa are region-cquivalent if € = £ and v =4 4.
A formal definition of the region-equivalence relation 2 4 is given in [3].

A region of the event-clock automaton A is an = y-equivalencee class of states
in S4. The number of A-regions is finite linear in the number of locations,
exponential in the mimber of clocks (that is, exponential in the size of the input
alphabet), and exponential in the size of the clock constraints of A. The region

cquivalence is instrumental for analyzing event-clock automata, becanse = 4 is a
bisimulation.

Lemma3. For all states 31,371,320 € Sa of an cvent-clock antomaton A, all
nput cymboL« a of A, and all real-valucd time delays 8 € RY, if 51 =4 s and
2 1) ~2, then fhrrr ts a atate 35 € Sa and a time delay 8 € RY such that

S9 —A "l and \i' —0 8’2.

Now we arc ready to define the region antomaton Reg(A) of A, an untimed
finite-state machine over the input alphabet L. The locations of Reg(A) are the
regions of A. A region is starting if it contains an initial state of A, and accepting
if it contains a final state of A. There is an edge from the region p to the rr‘gion
p' labeled with the input symbol a 1f there are two states s € p and s’ € p', and
a time delay § € R*, such that s 22 3. From Lemmas 2 and 3 it follows that
the region antomaton Reg(A) defines thn untimed language Untime(L(A)).

Theorem4 (Untiming). For cocry cvent-clock automaton A, the untimed lan.
quage Untime(L(A)) ts regular.

Closure properties and decision problems

While the class of timed automata is not closed under complement, and the
langnage inclusion (verification) problem for timed automata.is undecidable, the
siubelass of event-clock automata is well-behaved.

Theorem5 (Closure properties). Each of the classes ECA, ERA, and EPA

of timed languages are closed under unson, intcrscction, and complement.

Proof. Closire under union is trivial, because event-clock automata admit multi-
ple start locations. Closure nnder intersection is also straightforward, because the
standard automata-theoretic product construction Ay x A, for two given event-
clack (event-recording; event-predicting) antomata Ay and A, yiclds an cvent-
clock (event-recording; event-predicting) automaton. Closure under complement
rclies on the determinization construction: given an event-clock (event-recording;
event-predicting) automaton A, the event-clock (event-recording; event-predict-
ing) automaton = Det(A) that results from complementing the acceptance condi-
tion of Det(A) (interchange the aceepting and the nonaceepting states of Det(A))
defines the complement, of the timed language C(A). B

Unlike (nondcterministic) timed antomata, however, event-clock automata are
not closed under hiding and renaming of input symbels. This is hecanse the
timed language £ that contains all timed words & = (a,) over a unary alphabet
in which no two symbols ocenr with time difference 1 (ie., tj — ¢ # 1 for all
positions ¢ and j of 1) cannot be defined by a timed antomaton [3]. With com-
plementation and renaming (or hiding), on the other hand, £ is easily definable
from a language in ERA N EPA.

The determinization, closure propertics, and region constriction can be used
to solve decision problems for event-clock automata. To check if the timed lan-
gnage of an event-clock automaton A is empty, we construct the region automa-
ton Reg(A) and check if the untimed language of Reg(A) is empty. To check if

the language of the event-clock automaton A4y is included in the language of the
event-clock automaton A,, we determinize A,, complement Def(4,), take the
product with A,, and check if the language of the resulting ovent-clock automa-
ton .4y x = Det(A,) is empty by constructing the corresponding region antomaton.

Theorem 6 (Language inclusion). The problem of checking if £L(A1) C £(A,)
for two cvent-clock antomata Ay and Az ss decidable in PSPACE.

On the other hand, the problem of checking if the language of a given cvent-
recording (or event-predicting) automaton is empty can be shown to be PSPACE-
hard (similar to the hardness proof for emptiness of timed antomata. {3]).

Relationship between classes of timed automata

We bricfly review the definition of a timed automaton {3]. A (nondeterministic)
timed antomaton A consists of a finite input alphabet T, a finite set L of loca-
tions, a sct Lo C L of start locations, a sct Ly C L of aceepting locations, a
finite set. C of clocks, and a finite sct E of edges. Each edge ¢ is laheled with
an input symbol, a clock constraint over C, and a reset conditson C, C ' that.
specifies the clocks that are reset to 0 when the edge ¢ is traversed. Every timed
automaton 4, then, defines a timed language £(A), and we write NTA for the
class of timed langnages that arc definable by timed antomata. The class NTA
is closed under union and intersection, but not under complement.

The definition of determinism for timed antomata. is the same as for event-
clock automata. We write DTA for the class of timed languages that arc definable
by deterministic timed automata. Since DTA is closed under all boolean opera-
tions, DTA is strictly contained in NTA.

Theorem 7 (Relationship between classes).

(1)ERAZEPA (2)EPAZERA (3) ERAUEPA C ECA
(4)ECAcNTA (5)ERACDTA (6) EPA ¢ DTA
(7) DTA € ECA

Proof. For (1), the language of the cvent-recording antomaton A, of Figure 2
is not definable by an event-predicting auntomaton. For (2), the language of
the event-predicting antomaton As of Figure 2 cannot be defined by an cvent-
recording automaton. Similarly, for (3) it is possible to combine A; and Ay into
an event-clock automaton whose language is neither in ERA nor in EPA.

Every event-clock automaton ean be tranlated into a timed automaton. While
the translation preserves determinism for event-recording automata, event-pre-
dicting elocks introduce nondeterminism. The inclusions (4) and (5) follow. In-
clusion (4) is strict, because ECA is closed under complement. while NTA is not,
Inclusion (5) is strict because of (7). For (6), the timed language {(a™h ty.. . t,) |
30 <1< nt,—t;=1}isin EPA but not in DTA. For (7), the timed langnage
{(naa,tat1t2) | t2 — to = 1} is in DTA but not in ECA. @

In [5], we defined another subeclass of NTA that is closed under all boolean
operations, namely, the class 2DTA of timed languages that are definable by

deterministic twoway automata that can read the input word a bounded number
of times. While ECA is ecasily seen to be contained in 2DTA, and while there
are obvious similaritics between event-predicting clocks and the twoway reading
of the timed input word, the exact relationship between event-clock automata
and deterministic twoway automata remains to be studied. However, beeause
they admit nondeterminism, event-clock automata are perhaps more suited for
specification than deterministic twoway antomata.

5 Timed Transition Systems as Event-clock Automata

Timed transition systems

A transition system T consists of a set S of states, asct Sp C S of initial states,
and a finite set. T of transitions. Each transition 7 € 7 is a.binary relation over S.
For cach state s € S, the set. 7(s) gives the possible 7-successors of s; that s,
7{s) = {s' | (8,8"') € 7}. The transition system T is finite if the sct S of states is
finite. A run 3 of the transition system T is a finite sequence sq—sy— - - —3,
of states siuch that sg € S and for all 0 € 2 < n, there exists a transition 7, € T
such that s;31 € 7i(s;). The transition 7 is cnabled at the i-th step of the run 3
if 7(s;) is nonempty, and 7 is taken at the 2-th step if 5; € 7(si=y) (1.c., multiple
transitions may be taken at the same step). A varicty of programming systems,
such as message-passing systems and shared-memory systems, can be given a
transition-system semantics [12].

The model of transition systems is extended to timed transition systems so
that it is possible to express real-time constraints on the transitions [7]. A timed
transition system T consists of a transition system (S, So, 7) and two functions
! and u from T to Rt that associate with cach transition 7 € T a lower hound
l(7) and an upper bound u(7). Informally, the transition 7 must be enabled
continuously for at least I(+) time units before it can be taken, and 7 must not.
be enabled continuously for more than u(7) time units without being taken.
Formally, we associate a real-valued time-stamp with cach state change along a
run. A #tmed run ¥ of the timed transition system T is a finite sequence

toy gy gy Lt
of states s; € S and nondecreasing time-stamps ¢; € R* such that 3 is a run of
the underlying transition system and

1. Upper Bound: if T is cnabled at all steps k for i < k < j, and not taken at
all steps k for ¢t < k < j, then t; —¢; < u(7);

2. Lower Bound: if v is taken at the j-th step then there is some step 2 <
such that ¢ —#; > I(+) and 7 is cnabled at all steps & for 2 < & < j, and not
taken at all steps k for 2 < k < .

In other words, #4 is the initial time, and the transition system proceeds from
the state s; to the state s;4q at time ti4. The semantics of the timed transi-
tion system T is the set of timed runs of 7. Two timed transition systems are
equinalent if they have the same timed runs,

From timed transition systems to event-recording automata

We now show that the sct of timed runs of a finite timed transition system
can be defined by an cvent-recording antomaton. For this purposc, we nced to
switch from the state-based semanties of transition systems to an event-based
semantics. With the given timed run 7, we associate the timed word

17.‘(77) = ((_L,So),fn) ((80,.‘11),f|) ((S],.‘ig),fg) ((Sﬂ_..],sn),f"),

where L is a special symbol not in S (as usual, S = SU{L1}). Notice that the
timed run 7 and the corresponding timed word 1(7) contain the same informa-
tion: each event (i.c., state change) of 7 is modcled by a pair of states a source
state and a target state. Every finite timed transition system T = (S, T, Sa, [, u),
then, defines a timed language £(T) over the alphabet S5 x S, namely, the set.
of timed words () that correspond to timed runs 7 of T. Tt is casy to check
that two timed transition systems are equivalent iff they define the same timed
language.

Theorem 8 (Timed transition systems). For cuery finite timed transition
system T, there is an cvent-recording timed antomaton At that defincs the timed

langunge C(T).

Proof. Consider the given finite timed transition system T'. Each location of the
corresponding cvent-clock automaton A7 records a state s € S and, for cach
transition 7 € T, a pair of states (a(7), (7)) € S| x § such that if 7 is cnabled
in s, then 7 has been cnabled continuously without being taken since the last
state change from o(7) to 3(7). In addition, we use a special location €y as the
sole start location of Ar. Every location is an accepting location.

For cvery initial state sq € Sy, there is an edge from £, to (sq, {, 3)) la-
beled with the input symbol (1, s0) and the trivial clock constraint true, where
a(7) =L and 3(7) = sq for all transitions v € 7. In addition, there is an edge
from (s, (a,3)) to (s',(a’,8")) labeled with the input symbol (s,s) and the
clock constraint o iff there is a transition 7 € T such that (3,4') € 7, and for all
transitions T € T,

1. if 7 is enabled in s and s' ¢ 7(s), then (o'(7), (7)) = (a{(7), (7)), clse
(a'(7), 3'(7)) = (s,4');
if 7 is enabled in s, then ¢ contains the conjunct. Ta(r).8(r)) S U(T);
if s’ € 7(s), then ¢ contains the conjunct 2(a¢r).a(r) > (7).

@ 10

Notice that the size of the event-recording automaton A7 is exponential in the
size of the timed transition system 7. @

To check if two timed transition systems Ty and T, arc cquivalent, we construct.
the corresponding cvent-recording automata Ay, and Ar, and check if they
define the same timed language.

Corollary 9. The problem of checking sf two finite timed transition systems are
rquivalent is decidable in EXPSPACE.

=y

16.

1.

2.

0.

=3

14,

References

R. Alur, C. Courcoubetis, and 1). Dill. Model-checking in dense real-time. Mmfor-
malion and Compulalion, 104:2-34, 1993.

R. Alur, C. Courcoubetis, and 'I'. Henzinger. Compuling accumulated delays in
real-lime systems. In Proceedings of the Fifth Conference on Comnpuler-Aided Ver-
ificalion, Lecture Noles in Computer Science 697, pages 181-193. Springer- Verlag,

1993.

. R, Alur and D, Dill. Automata for modeling real-time sysiems. In Proceedings

of the 1 7th tnlernational Colloguiurm on Aulornala, Languages, and Programsming,
Lecture Notes in Compuler Science 443, pages 322-335. Springer- Verlag, 1990.

. R. Alur, I, Feder, and ‘T, Henzinger. The benelils of relaxing punctuality. In

Proceedings of the Tenth ACM Symposium on Principles of Distribuled Compuling,

pages 139-152, 1991,

. R.Alur and ‘I, Henzinger, Back Lo Lhe Tuture: Towards a theory of Limed reg-

ular languages. In Proceedings of the 38wl IKERE Symposinm on Foundalions of
Compuler Science, pages 177-186, 1992,

C. Courconbetis and M. Yannakakis. Minimuam and maximum delay problems
in real-lime systems. In Proceedings of the Thivd Worksliop on Cornpuler- Aided
Verificalion, Lecture Noles in Compuler Science 575, pages 399-409, 1991,

‘I'. Henzinger, 7. Manna, and A, Paueli. Temporal prool methodologies for real-
time systems. In Proceedings of the 18th ACM Symposium on Principles of Pro-
gramming Languages, pages 353-366, 1991.

‘I'. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model-checking for
real-lime systems. In Proceedings of the Seventh |EREE Symposium on Logic in
Compuler Science, pages 394-406, 1992,

J. Hoperoft and J. Ullman. Iniroduction Lo Automaelo Theory, Languages, ond
Compulation. Addison-Wesley, 1979.

. R. Kurshan. Redneibility in analysis of coordination. voiume 103 of Lecture Noles

in Comnpuler Science, pages 19-39. Springer-Verlag, 1987.

. N. Lyach and H. Attiya. Using mappings Lo prove Liming properties, Distributed

Compuling, 6:121-139, 1992.
7. Mannaand A. Prnueli. The Temporal Logic of Reactive and Coneurvent Systemns,
Springer-Verlag, 1991,

. M. Merritt, F. Modugno, and M. ‘Tullle. Time-constrained antomala. In Proceed-

ings of the Workshop on Theovies of Concurvency, Lecture Notes in Computer
Science 527, pages 408—423. Springer-Verlag, 1991,

F. Schneider, B. Bloom, and K. Marzullo. Putting time into prool outlines. In
Real-"Imne: Theory tn Practice, Leclure Notes in Compuler Science 600, pages

618-639. Springer-Verlag, 1991,

5. A. Sistla, M. Vardi, and P. Wolper. ‘I'he complementation problem for Bichi an-

tomala with applications Lo temporal logic. Theorelical Compuler Seience, 49:217-
237, 1987.

P. Wolper, M. Vardi, and A, Sistla. Rensoning about inlinite computation paths,
ln Proceedings of the 24th 1ERE Symposium on Foundalions of Compuler Seience,

pages 185-194, 1983,

.1 Yoneda, A, Shibayam, B. Schlingloll, and t. Clarke. Elficient verifiealion of

parallel real-time systems. 1o Proceedings of the Fifih Conference on Compuler-
Aided Vervificalion, Lecture Notes in Computer Science G697, pages 321-332.
Springer-Verlag, 1993,

